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Abstract. We present a systematic evaluation of a hybrid approach of
combined rule-based filtering and machine learning to Dutch corefer-
ence resolution. Through the application of a selection of linguistically-
motivated negative and positive filters, which we apply in isolation and
combined, we study the effect of these filters on precision and recall using
two different learning techniques: memory-based learning and maximum
entropy modeling. Our results show that by using the hybrid approach,
we can reduce up to 92 % of the training material without performance
loss. We also show that the filters improve the overall precision of the
classifiers leading to higher F-scores on the test set.

1 Introduction

Coreference resolution, resolving different descriptions or names for the same
underlying entity, is an important text analysis module for further processing and
understanding of text, for example in applications like information extraction
and question answering.

As an alternative to knowledge-based approaches, corpus-based machine learn-
ing techniques have become increasingly popular for the resolution of corefer-
ential relations. In a typical machine learning approach to coreference resolu-
tion, information on pairs of noun phrases is represented in a set of feature
vectors. Unsupervised learning techniques, e.g. [1], view coreference resolution
as a clustering task of combining noun phrases into equivalence classes. Most
learning approaches to coreference resolution, however, are supervised learning
techniques, for example the C4.5 decision tree learner[2] as in [3], [4] and [5] or
the ripper rule learner [6] as in [7]. A supervised learning approach requires an
annotated corpus from which for each pair of noun phrases a class (coreferential
or not coreferential) can be obtained. The pair of NPs is represented by a fea-
ture vector containing distance, morphological, lexical, syntactic and semantic
information on the candidate anaphor, its candidate antecedent and also on the



relation between both. In a postprocessing phase of such an approach, a complete
coreference chain has to be built between the pairs of NPs that were classified
as being coreferential.

As a consequence of recasting the problem as a classification task, coreference
resolution data sets reveal large class imbalances: only a small part of the possible
relations between noun phrases (NPs) is coreferential. When trained on such
imbalanced data sets, classifiers can exhibit a good performance on the majority
class instances but a high error rate on the minority class instances. Always
assigning the “non coreferential” class will lead to a highly ‘accurate’ classifier,
which cannot find any coreferential chain in a text.

In order to cope with these class imbalances, different instance selection tech-
niques have been proposed to rebalance the corpus [8, 9, 7, 10–12]. In [12], rebal-
ancing is done without any a priori linguistic knowledge about the class to be
solved. Most approaches, however, aim to produce better performing classifiers
through the application of linguistically motivated filters on the training data
before application of the classifier. Through the application of these linguistic
filters, part of the problem to be solved, viz. coreference resolution, is solved
beforehand and only a small part of the instances is handled by the classifier.
Unfortunately, previous literature on these filters is relatively vague on their
exact implementation and use and no systematic studies of their impact are
provided.

In this paper, we investigate the hybrid approach of combined knowledge-
based filtering and machine learning in a more systematic way. We apply a selec-
tion of linguistically-motivated negative and positive filters. Negative filters filter
out negative instances, positive filters do the same with examples of co-referring
NPs. We study the effect of these filters on performance and we investigate how
much reduction in training material we can obtain without performance loss. The
filters are considered separately and in combination. We use two different ma-
chine learning techniques to demonstrate the effects of filtering: a memory-based
learning approach and a maximum entropy approach. Most existing learning ap-
proaches to coreference resolution can be described as eager decision tree or rule
learning approaches; we investigate in this paper how a memory-based learning
and a maximum entropy approach tackle the problem of coreference resolution
and the problem of the skewness of the data. The experiments are performed on
the KNACK-2002 Dutch data set [12].

The remainder of this paper is organized as follows. Section 2 discusses the
preparation of the data sets including the selection of positive and negative
instances and presents the two machine learning packages we use in the experi-
ments. Section 3 gives an overview of instance selection in the machine learning
of coreference resolution literature, and discusses the positive and negative fil-
ters. This section also reports on the results obtained for both learners in a
hybrid architecture with filters compared to a completely data-driven setting,
and to baselines. Section 4 concludes this paper.



2 Experimental setup

2.1 Data

Our experiments are performed on a Dutch coreferentially annotated corpus,
KNACK-2002. KNACK is a Flemish weekly news magazine with articles on
national and international current affairs. For the annotation of the corpus, the
MUC-7 [13] manual, the manual from Davies et al. [14] and the work from van
Deemter and Kibble [15] were taken as source. The complete corpus consists
of 267 documents annotated with coreference information for NPs. 12,546 noun
phrases are annotated with coreferential information. For the experiments, 50
documents are randomly selected, of which 25 are used for training and the other
half for testing.

For the construction of the initial data sets, we selected all noun phrases,
which could be detected after preprocessing the raw text corpora. The following
preprocessing steps were taken: tokenization was performed by a rule-based sys-
tem using regular expressions. Dutch named entity recognition was performed
by looking up the entities in lists of location names, person names, organiza-
tion names and other miscellaneous named entities. We applied a part-of-speech
tagger and text chunker for Dutch that use the memory-based tagger MBT
[16], trained on the Spoken Dutch Corpus (http://lands.let.ru.nl/cgn). Finally,
grammatical relation finding was performed, using a shallow parser to determine
the grammatical relation between NP chunks and verbal chunks, e.g. subject,
object, etc. The relation finder [17] was trained on the previously mentioned Spo-
ken Dutch Corpus. It offers a fine-grained set of grammatical relations, such as
modifiers, verbal complements, heads, direct objects, subjects, predicative com-
plements, indirect objects, reflexive objects, etc. Figure 1 gives an overview of the
part-of-speech tags, chunk tags and relation tags for the following KNACK-2002
training sentence.

(1) < COREF ID = ”1528” MIN = ”conflict” > Het conflict over het
grensgebied < /COREF > is zo oud als < COREF ID = ”1464” > <
COREF ID = ”1451” > India < /COREF > en < COREF ID = ”1459”
> Pakistan < /COREF > < /COREF>.

English: The conflict about the border area is as old as India and Pak-
istan.

On the basis of the preprocessed texts, instances are created. We create
an instance between every NP and its preceding NPs, with a restriction of 20
sentences backwards. A pair of NPs that belongs to the same coreference chain,
gets a positive label; all other pairs get a negative label. This is the basic set
of instances. In the training set, the positive class accounts for only 8.5% of the
total number of 76,920 instances.

Instances describe the relation between a potential anaphor and its an-
tecedent. For each NP pair we create a set of 39 features encoding morphological-
lexical, syntactic, semantic, string matching and positional information sources.



Fig. 1. Part-of-speech tags, chunk tags and relation tags for the example sentence (1).

The overview below gives a short impression of the type of information encoded
in the features.

– morphological-lexical
Is there number agreement between anaphor and antecedent? Is it a def-
inite/indefinite anaphor? Is the anaphor/antecedent a pronoun or proper
noun?

– syntactic
Is the anaphor/antecedent object or subject of the sentence, is the anaphor
an apposition?

– positional
The local context of the anaphor, the distance in NPs and in sentences
between the anaphor and antecedent.

– semantic
Named entity type information. Are the NPs synonyms/hypernyms of each
other?

– string matching
Are the anaphor and antecedent a complete or partial match or alias from
each other? Do they share the same head word?

2.2 Learners

Two machine learning techniques are applied to the task of coreference resolu-
tion: a memory-based learning algorithm and a maximum entropy learner.

Memory-based learning (a k-nearest neighbor approach) is a lazy learning
approach that stores all training data in memory. At classification time, the
algorithm classifies new instances by searching for the nearest neighbors to the
new instance using a similarity metric, and extrapolating from their class. In
our experiments we use the timbl [18] software package3 that implements a
version of the k-nn algorithm optimized for working with linguistic datasets and
3 URL:http://ilk.uvt.nl



that provides several similarity metrics and variations of the basic algorithm.
Lazy learning is claimed to have the right bias for learning language processing
problems as it doesn’t abstract from exceptions and subregularities as more eager
learning approaches do through mechanisms like pruning.

Maximum entropy modeling (a kind of exponential or log linear modeling), on
the other hand, is a discriminative statistical machine learning approach [19, 20]
that derives a conditional probability distribution from labeled training data by
assigning a weight to each feature. We use the entropy modeling software package
maxent by Zhang Le [21]. Maximum Entropy has been shown to provide good
results with language data, and can handle large feature vectors and feature
redundancy.

Memory-based learning offers several algorithmic parameters such as num-
ber of nearest neighbors, the feature weighting and distance weighting. These
parameters can, individually and in combination, affect the functioning of the
algorithm. We use a heuristic wrapped-based method to set them automatically
for all experiments.

Wrapped progressive sampling (wps)[22] combines classifier wrapping [23]
with progressive sampling of training material [24]. wps starts with a large pool
of experiments, each with one systematically generated recombination of tested
algorithmic parameter settings. In the first step of wps, each attempted set-
ting is applied to a small amount of training material and tested on a small
amount of held-out training data. Only the best settings are kept; all others are
removed from the pool of competing settings. In subsequent iterations, this step
is repeated, retaining only the best-performing settings, with an exponentially
growing amount of training and held-out data – until all training data is used
or one best setting is left. Selecting the best settings at each step is based on
classification score on the held-out data; a simple one-dimensional clustering on
the ranked list of scores determines which group of settings is selected for the
next iteration. The final selected parameters of the wps procedure are then used
to classify the test set.

We did not optimize the parameters of maxent as it was shown in [22]
that wps did not increase the generalization performance of maximum entropy
modeling. We train maxent with L-BFGS parameter estimation, 100 iterations
and a Gaussian prior with mean zero and σ2 of 1.0.

2.3 Evaluation

Defining the coreference resolution process as a classification problem involves
the use of a two-step procedure. In a first step, the classifier (in our case timbl
or maxent) decides on the basis of the information learned from the training
set whether the combination of a given anaphor and its candidate antecedent in
the test set is classified as a coreferential link. Since each NP in the test set is
linked with several preceding NPs, this implies that one single anaphor can be
linked to more than one antecedent, which for its part can also refer to multiple
antecedents, and so on. Therefore, a second step is taken, which involves the
selection of one coreferential link per anaphor.



In our experiments, the two steps are organized as follows. As a first step, in
the classification experiments on the instance level, possibly coreferential NPs are
classified as being coreferential or not. For the experiments with both learners,
we perform 25-fold cross validation on the training data and we evaluate the
results of our experiments by computing micro-averaged precision, recall and F-
score at the instance level. For the second step, the experiments on the test set
of 25 documents, the performance is also reported in terms of precision, recall
and F-measure, but this time using the MUC scoring program from Vilain et
al. [25]. The program looks for the evaluation at equivalence classes, being the
transitive closure of a coreference chain 4 .

We can illustrate this testing procedure for the coreferential relation between
“he” and “President Bush” in the following test sentence.

(2) President Bush met Verhofstadt in Brussels. He talked with our
prime minister about the situation in the Middle East.

For the NP “he” test instances are built for the NP pairs displayed in Table 1.
After application of timbl or maxent, the result of the first step might be
that the learner classifies the first instance as non-coreferential and the last two
instances as being coreferential. Since we start from the assumption that each NP
can only corefer with exactly one other preceding NP, a second step is required
to make a choice between these two positive instances (he - Verhofstadt) and
(he - President Bush).

Table 1. Test instances built for the “he” in example (2).

Antecedent Anaphor Classification

Brussels he no
Verhofstadt he yes
President Bush he yes

In a second step, the coreferential chains are built on the basis of the pos-
itively classified instances. For this step, different directions can be taken: a
“closest-first” approach (eg. [5]) in which the first markable found to be coref-
erent with the anaphor is the antecedent, or an approach [7] which aims to find
the most likely antecedent. This is done by selecting the antecedent with the
highest confidence value among the candidate antecedent, or a twin-candidate
approach [26, 9] in which the antecedent for an anaphor is selected after pairwise
comparison of the possible antecedents.

Instead of selecting one single antecedent per anaphor, as in the previously
described approaches, we tried to build complete coreference chains for our doc-
uments. We will now continue with a description of our selection procedure.
4 We did not compute significance scores because the scores given by MUC scoring

program are not proper input for significance testing.



2.4 Antecedent selection

We used the following counting mechanism to recover the coreference chains in
the test documents.

1. Given an instance base with anaphor - antecedent pairs (anai, antij), for
which i = 2 to N and j = i − 1 to 0. Select all positive instances for each
anaphoric NP. Then make groupings by adding the positive antij to the
group of anai and by adding anai to the group of antij .
The following is an example of such a grouping. The numbers represent
IDs of anaphors/antecedents. The number before the colon is the ID of the
anaphor/antecedent and the other numbers represent the IDs which relate
to this anaphor/antecedent.

2: 2 5 6 25 29 36 81 92 99 231 258 259 286
5: 2 5 6 25 29 36 81 92 99 231 258 259 286
6: 2 5 6 25 29 36 81 92 99 231 236 258 259 286
8: 8 43 64 102 103 123 139 144 211 286
20: 20 32 69 79

2. Then compare each ID grouping with the other ID groupings by looking for
overlap between two groupings. Select the pairs with an overlap value above
a predefined threshold. We selected all pairs with an overlap value above 0.1.
For example, we computed the overlap between the grouping of ID 2 with
the groupings of IDs 5, 8 and 20 in the previous example as can be seen in
Table 2. For the groupings of 2 and 5, we can observe a complete overlap.
Combining ID 8 with ID 2, however, leads to a very weak overlap (only on
one ID) and an overlap value of 0.08. And no overlap is found for the combi-
nation of ID 20 and ID 2. If we take into account an overlap threshold of 0.1,
this implies that the two last NP pairs in the table below will not be selected.

Table 2. Example of overlap computation between the grouping of ID 2 and the
groupings 5, 8 and 20.

Overlap ID+NP ID+NP

1 5 Loral Space 2 Loral Space
0.08 8 Globalstar 2 Loral Space
0 20 Lockheed Martin Corp. 2 Loral Space

3. For each pair with an overlap value above the threshold, compute the union
of these pairs. Table 3 illustrates this procedure.



Table 3. Example output from the antecedent selection script. The table shows the
incremental construction of one coreferential chain.

ID + Anaphor <- ID + Antecedent

8 Globalstar <- 43 Globalstar Telecommunications Ltd.

8 Globalstar <- 43 Globalstar Telecommunications Ltd. <- 64 Globalstar

8 Globalstar <- 43 Globalstar Telecommunications Ltd. <- 64 Globalstar <- 102
Globalstar

8 Globalstar <- 43 Globalstar Telecommunications Ltd. <- 64 Globalstar <- 102
Globalstar <- 103 Globalstar

8 Globalstar <- 43 Globalstar Telecommunications Ltd. <- 64 Globalstar <- 102
Globalstar <- 103 Globalstar <- 123 Globalstar

8 Globalstar <- 43 Globalstar Telecommunications Ltd. <- 64 Globalstar <- 102
Globalstar <- 103 Globalstar <- 123 Globalstar <- 139 Globalstar

8 Globalstar <- 43 Globalstar Telecommunications Ltd. <- 64 Globalstar <- 102
Globalstar <- 103 Globalstar <- 123 Globalstar <- 139 Globalstar <- 144 Glob-
alstar

8 Globalstar <- 43 Globalstar Telecommunications Ltd. <- 64 Glob-
alstar <- 102 Globalstar <- 103 Globalstar <- 123 Globalstar <- 139
Globalstar <- 144 Globalstar <- 211 Globalstar

3 Hybrid versus data-driven resolution

In order to rebalance the highly skewed data sets, positive and negative filters
can be applied to the data. These filters split the basic set of instances in two
parts: one parts gets a label automatically assigned by the filter, the other part
is classified by a classifier. There are several ways to look at this approach. It
can be regarded as a language engineering approach, a preprocessing trick, but it
can also be made into a principled approach to creating hybrid knowledge-based
and machine learning based systems where both approaches solve the problems
they are best at. To be able to do this, a systematic study has to be undertaken
of the effect of different possible filters.

3.1 Related research on instance selection

Some of the filters proposed in literature aim exclusively at the reduction of
negative instances, reducing the positive class skewness. Strube et al. [8], for
example, apply a number of filters, which reduce up to 50% of the negative
instances. These filters are all linguistically motivated, e.g. discard an antecedent-
anaphor pair (i) if the anaphor is an indefinite NP, (ii) if one entity is embedded
into the other, e.g. if the potential anaphor is the head of the potential antecedent
NP, (iii) if either pronominal entity has a value other than third person singular
or plural in its agreement feature. And Yang et al. [9] use the following filtering
algorithm to reduce the number of instances in the training set: (i) add the NPs
in the current and previous two sentences and remove the NPs that disagree in



number, gender and person in case of pronominal anaphors, (ii) add all the non-
pronominal antecedents to the initial candidate set in case of non-pronominal
anaphors.

Others such as Ng and Cardie [7] and Harabagiu et al. [10] also try to filter
out less important or very easy positive instances to force the learning algorithm
to specialize on the more difficult cases. Ng and Cardie [7] propose both neg-
ative sample selection (the reduction of the number of negative instances) and
positive sample selection (the reduction of the number of positive instances),
both under-sampling strategies aiming to create a better coreference resolution
system. Given the observation that one antecedent is sufficient to resolve an
anaphor, they present a corpus-based method for the selection of easy positive
instances, which is inspired by the example selection algorithm introduced in [10].
The assumption is that the easiest types of coreference relationships to resolve
are the ones that occur with high frequencies in the training data. Harabagiu
et al. [10] mine by hand three sets of coreference rules for covering positive in-
stances from the training data by finding the coreference knowledge satisfied by
the largest number of anaphor-antecedent pairs. The high confidence coreference
rules, for example, look for (i) repetitions of the same expression, (ii) apposi-
tions or arguments of the same copulative verb, (iii) name alias recognitions,
(iv) anaphors and antecedents having the same head. Whenever the conditions
for a rule are satisfied, an antecedent for the anaphor is identified and all other
pairs involving the same anaphor can be filtered out. Ng and Cardie [7] write
an automatic positive sample selection algorithm that coarsely mimics the [10]
algorithm by finding a confident antecedent for each anaphor. They show that
system performance improves dramatically with positive sample selection. The
application of both negative and positive sample selection leads to even better
performance. But they mention a drawback in case of negative sample selection:
it improves recall but damages precision.

Uryupina [11] distinguishes between four types of markables (pronouns, def-
inites, named entities, and all the other NPs) and proposes different sample se-
lection mechanisms, reflecting the different linguistic behavior of these anaphors.
In cross-comparative results with and without instance selection she shows an
increase on both speed and performance.

All previous approaches concentrate on instance selection through the ap-
plication of linguistically motivated filters. In [12], this rebalancing of the data
is done without any a priori knowledge about the task to be solved and linked
to the specific learning behavior of a lazy learner (timbl) and an eager learner
(ripper). This work shows that both learning approaches behave quite differ-
ently in case of skewness of the classes and they also react differently to a change
in class distribution.

The described selection approaches provide very few results on the effect
of these filters on performance. In case cross-comparative results are provided,
this is done in a coarse-grained manner. In the remainder of this paper, we will
discuss our selection of filters and investigate in a fine-grained fashion whether
these filters contribute to classification performance and how.



3.2 Positive and negative filtering

Our hybrid approach works as follows. After instance creation, each instance is
matched against the filter rule. The subset of instances that match with the filter
rule are labeled by the filter. The other part of the instance set is handled by
the classifier. The filter rule is applied to both training and test instances.

In order to assess the effect of filtering on classification results, we investigate
the following filters:

– fdef: The first filter rule we investigated, filters out all instances containing
an indefinite anaphor and assigns a negative label to these instances.

– The filter fhead filters out instances in which the anaphor and antecedent are
located at a distance of more than three sentences from each other. Instances
beyond the scope of three sentence, which share the same head word, are
retained in the data set.

– The filter fagree applies to pronouns only and demands agreement between
anaphor and antecedent. The filter removes instances in which the antecedent
does not have the same number or an incompatible gender type.

– The filter rule fmatch is based on [7] and is the only filter that also assigns
positive labels. The filter assigns a positive label to an instance that describes
an anaphor and antecedent which have a complete string match (discarding
determiner information). All other instances containing that same anaphor
with another antecedent get a negative label.

– The filter f3s restricts the search space for pronouns to three sentences. The
filter rule assigns all pronoun-antecedent pairs at a larger sentence distance
a negative label. So this filter deliberately can remove part of the positive
instances, based on the observation that most pronouns refer to a close-by
antecedent.

These filters are also combined: the filter combination 1 combines the four
negative filters, whereas the filter combination 2 combines all filters together.

On the one hand, these simple filter rules are aimed at the removal of neg-
ative instances to change the balance between positive and negative instances.
On the other hand, some of the filter rules also deliberately remove positive in-
stances. As explained in Section 2.3 one anaphor can be preceded by multiple
coreferential antecedents, but we only need to resolve one antecedent to build
up the coreferential chain. The filters f3s, fhead and fmatch are based upon this
principle. The rule f3s is based on the observation that pronouns usually find
an antecedent within three sentences. The filter therefore can filter out positive
antecedents that are at a larger distance from the anaphor. The filter fmatch re-
moves other possible antecedents if one confident antecedent (complete match)
has been found. The fhead rule assigns a negative label to potentially coreferen-
tial NPs at a sentence distance larger than 3, if they do not share the same head
word with the anaphor under consideration.

Table 4 gives an overview of the number of training instances that are left
to be handled by the classifier after the different filters have been applied. The
last column of the table shows the number of positive instances in those training



sets. The results show that these filters account for a large part of the data
and indeed lead to a less skewed data set, except for the filters f3s and fmatch.
The fhead filter has also removed a part of the positive examples but a much
larger part of the negatives, leading in the end to a positive effect on the class
balance. The combination 2 filter, for example, accounts for 91.7% of the data,
only leaving 6,286 instances to be classified by the learner. These instances also
have a less skewed distribution.

Table 4. Number of training instances after application of the filters. The second
column gives the absolute numbers, whereas the third column shows the percentage
of training instances left to be treated by the classifier. The last column shows the
skewness of the class distribution in those data sets.

Filter number %inst %pos

normal 76,920 100 8.5
fdef 64,656 84.1 9.2
fagree 66,786 86.8 9.2
f3s 59,183 76.9 7.5
fhead 15,041 19.6 19.5
fmatch 57,479 74.4 8.0
combi1 9,723 12.6 20.3
combi2 6,286 8.3 17.7

We go on to investigate whether the skewness of the data is indeed harmful
for the classifiers and whether filtering leads to better classification results and
a better overall performance.

3.3 Results

We first consider the results of the 25-fold cross validation experiments on the
training set in which we evaluate the performance of the first step of our ap-
proach: classifying NP pairs as being coreferential or not. Table 5 shows the
micro-averaged F-scores of both classifiers, on the left hand side computed on
all training instances (the joint effect of filters and machine learning) and on the
right hand side on the subset of instances classified by the learner (the work that
is left after the application of the filters). In general, the overall F-scores (in the
right column) of the hybrid systems measured are lower than the F-score of the
systems without filtering (default). Specially the f3s filter has a low score which
can be explained by the fact that this rule deliberately labels part of the positive
training instances as being negative (the instances where the distance between
pronouns and antecedents is larger than three). When we look at the subset of
instances classified by a learner, we observe for maxent that each filter improves
the F-score on the subset. For timbl we observe only for some of the filters an
improvement. This observation for timbl is in line with earlier findings in [27,
12].



Another observation relates to skewness. Three of the filters (fhead, combi1,
combi2) change the class balance between positive and negative instances dras-
tically as shown in Table 4. We can observe for both maxent and timbl that
these three filters lead to the highest classifier F-scores on the cross-validation
data. We do not see this clear effect on the test set. We believe this is due to the
difference in measurement. On the test set, we measure F-scores at coreference
chain level, and we do not need to retrieve all positive instances to build the
complete coreference chain.

Table 5. Summary of micro-averaged F-scores of 25-fold cross validation experiments
on the training set for maxent and timbl with and without the different filters.The
left part of the table shows the results of the combined filters and learners, whereas the
right part of the table only considers the subset of instances classified by the learners.

maxent timbl #num. maxent timbl

default 37.6 46.7 76,920 37.6 46.7

fdef 37.6 44.2 64,656 40.0 46.8
fagree 37.9 44.7 66,786 39.5 46.4
f3s 31.6 35.2 59,183 41.5 45.2
fhead 34.8 39.7 15,041 58.3 67.0
fmatch 43.1 43.6 57,479 39.0 39.7
combi1 29.3 31.3 9,723 65.9 70.8
combi2 31.5 30.5 6,286 55.6 54.0

We now discuss the results on the test set showing MUC-scores computed at
the coreference chain level. We computed a baseline score by assigning each NP
in the test set its most nearby NP as antecedent. This gives us a baseline score
with a high recall of 63.1%, a precision of 22.7% and an F-score of 33.4%.

The results on the test set for maxent and timbl are shown in Table 6. For
timbl, we observe that all hybrid systems improve the precision of the system
at the expense of recall. Only in the case of the combi1 filter this leads to a
lower F-score; in all other cases the shift leads to a higher F-score. For maxent,
all hybrid systems except fagree have a higher F-score on the test set than the
default system. Each filter produces a higher precision and in the case of f3s,
fhead and fmatch also a higher recall.

4 Concluding remarks

We have shown that two distinct learning techniques benefit from a combined
approach of knowledge-based filtering and machine-learning based classification.
We observe that our simple filter rules can provide a large reduction in the
number of instances to be classified. The filters improve the overall precision of
the system on the test set leading to higher F-scores in almost all experiments.



Table 6. MUC scores on the test set of timbl and maxent with and without the
different filters.

timbl maxent

recall precision F-score recall precision F-score

normal 60.0 35.2 44.4 41.7 42.2 42.0
fdef 49.2 46.7 47.9 39.5 46.4 42.7
f3s 58.0 36.8 45.1 51.2 43.8 47.2
fagree 50.2 40.4 44.7 41.3 42.3 41.8
fhead 39.8 60.3 47.9 45.5 42.7 44.1
fmatch 46.7 48.4 47.5 51.2 42.4 46.4
combi1 40.7 46.1 43.2 38.5 51.6 44.1
combi2 36.7 61.0 45.8 40.0 51.8 45.1

Most successful is the combi2 filter which combines five simple filter rules and
leads to a large instance reduction of up to 92%, and produces a better F-score
on the test set for both maxent and timbl.

As future work we plan to investigate the filter rules in contrast to a machine
learning approach in which the feature weights correspond to the filters are
boosted. It would also be interesting to investigate whether similar filter rules
have a similar positive effect for other languages. In contrast to a pure machine
learning approach, a hybrid approach has the disadvantage that it may require
careful re-engineering of the knowledge-based part for different languages.

References

1. Cardie, C., Wagstaff, K.: Noun phrase coreference as clustering. In: Proceedings
of the 1999 joint SIGDAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora. (1999) 82–89

2. Quinlan, J.: C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo,
CA (1993)

3. Aone, C., Bennett, S.: Evaluating automated and manual acquisition of anaphora
resolution strategies. In: Proceedings of the 33rd Annual Meeting of the Association
for Computational Linguistics (ACL-1995). (1995) 122–129

4. McCarthy, J.: A Trainable Approach to Coreference Resolution for Information
Extraction. PhD thesis, Department of Computer Science, University of Mas-
sachusetts, Amherst MA (1996)

5. Soon, W., Ng, H., Lim, D.: A machine learning approach to coreference resolution
of noun phrases. Computational Linguistics 27 (2001) 521–544

6. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the 12th Interna-
tional Conference on Machine Learning (ICML-1995). (1995) 115–123

7. Ng, V., Cardie, C.: Combining sample selection and error-driven pruning for ma-
chine learning of coreference rules. In: Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing (EMNLP-2002). (2002) 55–62

8. Strube, M., Rapp, S., Müller, C.: The influence of minimum edit distance on
reference resolution. In: Proceedings of the 2002 Conference on Empirical Methods
in Natural Language Processing (EMNLP-2002). (2002) 312–319



9. Yang, X., Zhou, G., Su, S., Tan, C.: Coreference resolution using competition
learning approach. In: Proceedings of the 41th Annual Meeting of the Association
for Compuatiational Linguistics (ACL-03). (2003) 176–183

10. Harabagiu, S., Bunescu, R., Maiorano, S.: Text and knowledge mining for corefer-
ence resolution. In: Proceedings of the 2nd Meeting of the North American Chapter
of the Association of Computational Linguistics (NAACL-2001). (2001) 55–62

11. Uryupina, O.: Linguistically motivated sample selection for coreference resolution.
In: Proceedings of DAARC-2004. (2004)

12. Hoste, V.: Optimization Issues in Machine Learning of Coreference Resolution.
PhD thesis, Antwerp University (2005)

13. MUC-7: Muc-7 coreference task definition. version 3.0. In: Proceedings of the
Seventh Message Understanding Conference (MUC-7). (1998)

14. Davies, S., Poesio, M., Bruneseaux, F., Romary, L.: Annotating coreference
in dialogues: Proposal for a scheme for mate. http://www.hcrc.ed.ac.uk/ poe-
sio/MATE/anno manual.htm (1998)

15. van Deemter, K., Kibble, R.: On coreferring: Coreference in muc and related
annotation schemes. Computational Linguistics 26 (2000) 629–637

16. Daelemans, W., Zavrel, J., Berck, P., Gillis, S.: Mbt: A memory-based part of
speech tagger generator. In: Proceedings of the 4th ACL/SIGDAT Workshop on
Very Large Corpora. (1996) 14–27

17. Tjong Kim Sang, E., Daelemans, W., Höthker, A.: Reduction of dutch sentences
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